top of page

IQPI SIX SIGMA BLACK BELT BODY OF KNOWLEDGE

0.0 Basics 

0.0 What is Quality?

0.1 What is Six Sigma?

0.2 How is Quality and Six Sigma Related?

0.3 What is Project Management?

0.4 How do I move as a Project Manager?

0.5 How do I merge Six Sigma & Project Management?

0.6 How do I select the project I should be working on?

1.0 Define Phase

1.1 Selecting my goal based on the project selection

1.1.1 Basic Six Sigma Metrics

1.1.1 Creating a Scope 

1.2 Filling a Project Charter

2.0 Measure Phase

 

2.1 Thinking about the Process Photograph 

2.1.1 Cause & Effect / Fishbone Diagrams

2.1.2 Process Mapping, SIPOC, Value Stream Map

2.1.3 X-Y Diagram

2.1.4 Failure Modes & Effects Analysis (FMEA)

2.2 Six Sigma Statistics

2.2.1 Basic Statistics

2.2.2 Descriptive Statistics

2.2.3 Normal Distributions & Normality

2.2.4 Graphical Analysis

2.3 Measurement System Analysis

2.3.1 Precision & Accuracy

2.3.2 Bias, Linearity & Stability

2.3.3 Gage Repeatability & Reproducibility

2.3.4 Variable & Attribute MSA

2.4 Process Capability

2.4.1 Capability Analysis

2.4.2 Concept of Stability

2.4.3 Attribute & Discrete Capability

2.4.4 Monitoring Techniques

 

3.0 Analyze Phase

 

3.1 Patterns of Variation

3.1.1 Multi-Vari Analysis

3.1.2 Classes of Distributions

3.2 Inferential Statistics

3.2.1 Understanding Inference

3.2.2 Sampling Techniques & Uses

3.2.3 Central Limit Theorem

3.3 Hypothesis Testing

3.3.1 General Concepts & Goals of Hypothesis Testing

3.3.2 Significance; Practical vs. Statistical

3.3.3 Risk; Alpha & Beta

3.3.4 Types of Hypothesis Test

3.4 Hypothesis Testing with Normal Data

3.4.1 1 & 2 sample t-tests

3.4.2 1 sample variance

3.4.3 One Way ANOVA

3.5 Hypothesis Testing with Non-Normal Data

3.5.1 Mann-Whitney

3.5.2 Kruskal-Wallis

3.5.3 Mood’s Median

3.5.4 Friedman

3.5.5 1 Sample Sign

3.5.6 1 Sample Wilcoxon

3.5.7 One and Two Sample Proportion

3.5.8 Chi-Squared (Contingency Tables)

 

4.0 Improve Phase

 

4.1 Simple Linear Regression

4.1.1 Correlation

4.1.2 Regression Equations

4.1.3 Residuals Analysis

4.2 Multiple Regression Analysis

4.2.1 Non- Linear Regression

4.2.2 Multiple Linear Regression

4.2.3 Confidence & Prediction Intervals

4.2.4 Residuals Analysis

4.2.5 Data Transformation, Box Cox

4.3 Designed Experiments

4.3.1 Experiment Objectives

4.3.2 Experimental Methods

4.3.3 Experiment Design Considerations

4.4 Full Factorial Experiments

4.4.1 2k Full Factorial Designs

4.5 Fractional Factorial Experiments

4.5.1 Designs

4.6 Lean 

4.6.1 Control Methods for 5S

4.6.2 Kanban

4.6.3 Poka-Yoke (Mistake Proofing)

 

5.0 Control Phase

 

5.1 Lean Controls

5.1.1 Control Methods for 5S

5.1.2 Kanban

5.1.3 Poka-Yoke (Mistake Proofing)

5.2 Statistical Process Control (SPC)

5.2.1 Data Collection for SPC

5.2.2 I-MR Chart

5.2.3 Xbar-R Chart

5.2.4 U Chart

5.2.5 P Chart

5.2.6 NP Chart

5.2.7 Xbar-S Chart

5.2.8 CuSum Chart

5.2.9 EWMA Chart

5.2.10 Control Methods

 

6.0 Closing Phase

 

6.1 Presenting the project

  • Instagram
  • Icono social LinkedIn
  • Facebook

© 2016 by International Quality Project Management Institute

bottom of page